

Journal of Alloys and Compounds 317–318 (2001) 287–292

Several of
ALLOYS
AND COMPOUNDS
————————————————————

www.elsevier.com/locate/jallcom

Structural and electrical properties of $Co_{1-x}Ru_{x}Sb_{y}$

T. Harada^{a, *}, T. Kanomata^a, T. Suzuki^a, H. Yoshida^b, T. Kaneko^b

a *Faculty of Engineering*, *Tohoku Gakuin University*, *Tagajo* ⁹⁸⁵-8537, *Japan* b *Institute for Materials Research*, *Tohoku University*, *Sendai* ⁹⁸⁰-8577, *Japan*

Abstract

Electrical resistivity, Hall coefficient, thermoelectric power and crystal structure were measured for the pseudo-binary system $Co_{1-x}Ru_sSb_s$. By the results of X-ray analysis, the monoclinic distortion from the orthorhombic marcasite structure decreases gradually and disappears at about *x*=0.14. The electrical measurements show that $Co_{1-x}Ru_xSb_2$ ($0 \le x \le 1$) are all semiconductive, in spite of the gradual change of valence electron number, by substituting Ru atom for Co. It was $T^{-1/4}$ and $T^{-1/2}$ temperature dependence in the lower temperature range. These temperature changes of ρ are the same as those of the variable range hopping (VRH) conduction in the impurity conduction range of the usual semiconductors. \oslash 2001 Elsevier Science B.V. All rights reserved.

Keywords: Co₁, Ru, Sb₂; Electrical resistivity; Hall coefficient; Thermoelectric power; Crystal structure; Hopping conduction

Transition metal dipnictide $RuSb_2$ crystallizes in the Appropriate amounts of Co (4N pure), Ru (3N pure) and orthorhombic marcasite structure (Fig. 1) [1,2] and CoSb, Sb (5N pure) powders (High Purity Chemicals, Japan) in the monoclinic arsenopyrite type, slightly distorted from the marcasite structure [3,4]. These compounds are semiconductive and non-magnetic [5–8]. There have been many studies on some physical properties and the electronic structure of $CoSb₂$ [9–12]. The semiconductive property of CoSb, has been understood by the band model, that is, the cation e_{ρ} orbitals and the anion s and p orbitals form bonding σ and antibonding σ^* bands; the cation t_{2g} orbitals form narrow non-bonding bands located in the gap between σ and σ^* [11]. The five 3d electrons fill the non-bonding bands split by the monoclinic distortion. For $RuSb₂$ it can be considered that the four 4d electrons fill the non-bonding d-bands split by the orthorhombic symmetry similar to $FeSb₂$ in Ref. [12].

The purpose of the present investigation is to examine the complete mutual solubility between CoSb_2 and RuSb_2 and the transition from the monoclinic structure to the orthorhombic one, in order to ascertain the electrical properties of the pseudo binary system $Co_{1-x}Ru_{x}Sb_{2}$.

1. Introduction 2. Experimental

Sb (5N pure) powders (High Purity Chemicals, Japan)

^{*}Corresponding author. Fax: $+81-22-368-7070$.

E-mail address: tharada@tjcc.tohoku-gakuin.ac.jp (T. Harada). Fig. 1. Crystal structure of the orthorhombic marcasite-type.

Fig. 2. Composition (*x*) dependence of lattice parameters *a*, *b*, *c*, position parameters *u* and *v* and volume of unit cell (*V*) for Co_{1-x}Ru_xSb₂ (0≤*x*≤1) at room temperature.

 u and v , position parameters in the orthorhombic unit cell.

^b M–R, nearest distance between metal and metalloid.

were mixed in desired compositions and were sealed in evacuated silica tubes. Then, they were heated up to $700-800^{\circ}$ C for about 7 days. After, the ingots were pulverized, mixed, sealed again in evacuated silica tubes and heated at 700° C for 5 days and slowly cooled. The heat treatment was repeated for each sample until it exhibited a single phase.

Powder X-ray diffraction measurements were carried out using Cu $K\alpha$ radiation. All diffraction lines for the prepared samples were indexed according to the orthorhombic marcasite structure and related monoclinic distortion. An extra line showing the existence of impurity phase in X-ray patterns was not observed.

The samples for electrical measurements were prepared by heating at 650°C after pressing powders into a disk and then by cutting into a bar of $1\times2\times7$ mm. Electrical resistivity was measured by an ordinary four-probe technique using mechanical positional point contacts. Hall coefficient was measured under magnetic fields of 5 kOe and 10 kOe. Thermoelectric measurements were carried out with Copper-Constantan thermocouples in direct contact with the samples. The temperature difference across a sample was $3-7^{\circ}$ C. Details of experimental procedure are given in Ref. [13].

3. Results and discussion

Fig. 2 shows the lattice parameters *a*, *b*, *c*, position parameters u and v and volume of unit cell V as a function of the Ru content *x*, respectively. The values of *a*, *b*, *c*, *V*, u, v and β are given in Table 1. In the figures and the table, the lattice parameters are expressed with the ortho-

Fig. 3. Composition (*x*) dependence of nearest atomic distance of metal

rhombic setting. The lattice parameters of CoSb₂ and

(M)-metalloid (R) and the *B* a

 (M) –metalloid (R) and the β angle of the marcasite-type structure for RuSb₂ in the table are identical to that for CoSb₂ reported $\text{Co}_{1-x} \text{Ru}_x \text{Sb}_2$ ($0 \le x \le 1$) at room temperature; (a) M–R and (b) β .

Fig. 4. Temperature dependence of resistivity (ρ) of Co_{1-x}Ru_xSb₂ (0 \leq $x \le 1$).

by Terzief [8] $(a=5.5789 \text{ Å}, b=6.387 \text{ Å}, c=3.376 \text{ Å})$ and for RuSb₂ reported by Holseth [14] $(a=5.9524 \text{ Å}, b=$ 6.6737 Å, $c = 3.1803$ Å). As shown in Fig. 2, *a* and *b* decrease with increasing *x*. However, *c* (the nearest atomic metal distance (M–M)) decreases more sharply than those of *a* and *b*, with increasing *x*. *V* decreases linearly with *x*. The parameter *u* decreases slightly with *x*, but the *v*parameter does not change with *x*. Fig. 3a and b show the composition dependence of nearest atomic distance between metal and metalloid $(M-R)$ and the β angle, respectively, which is equal to 90° for the orthorhombic unit cell and smaller than 90° for the monoclinically

Table 2 Electrical properties of $Co_{1-x}Ru_xSb_2$ ($0 \le x \le 1$)

Comp- osition \boldsymbol{x}	ρ (300 K) $(\Omega$ cm)	S (300 K) $(\mu V/K)$	$R_{\rm H}$ (80 K) $\text{(cm}^3/\text{C})$	μ $(80 K)^a$ $\left(\frac{\text{cm}^2}{\text{V s}}\right)$	$E_{\rm g}^{\rm \ b}$ (eV)
$\mathbf{0}$ 0.1 0.2 0.3 0.4 0.5	0.0015 0.0049 0.0052 0.016 0.028 0.015	$+26$ $+3$ -13 -13 -14 -19	$+1.8\times10^{-1}$ $+6.0\times10^{-3}$ -1.5×10^{-3} -2.5×10^{-3} $+3.8\times10^{-3}$ $+6.2\times10^{-3}$	h 70 h 0.54 e 8.9×10^{-3} e 2.6×10^{-3} h 2.9×10^{-4} h 6.4×10^{-2}	0.15 0.17 0.14 0.14 0.13
0.6 0.7 0.8 0.9 1.0	0.024 0.12 0.23 0.22 0.63	-35 -72 -138 -233 -274	-7.5×10^{-3} -7.6×10^{-2} -0.61 -5.8 -1.3	e 2.2×10^{-2} e 2.2×10^{-2} e 3.0×10^{-2} e 0.25 e 6.1	0.18 0.22 0.19 0.29 0.39

Fig. 5. Temperature dependence of Hall coefficient (R_H) of Co_{1-x}Ru_xSb₂ ^a μ , mobility; e, electron; h, hole. (0 $\le x \le 1$); (a) for (0 $\le x \le 0.4$) and (b) for (0.5 $\le x \le 1.0$). Open symbols are μ _{*E_s}*, intrinsic energy gap.</sub>

distorted cell. As shown in Fig. 3b, the monoclinic for the positive hole in CoSb₂ and $\mu = 6.1 \text{ cm}^2/V$ s for the distortion from the orthorhombic marcasite structure de-
electron in RuSb₂. The composition dependence tance increases about 3% from $x=0$ to $x=1$. those for $x=0$ (CoSb₂) and $x=1$ (RuSb₂).

Fig. 4 shows the resistivities of the examined Fig. 6 shows the thermoelectric power (*S*) of the eV for $\cos b_2$ and $\Delta E = 0.40$ eV for RuSb_2 . The com-
position dependence of the energy gaps calculated for It should be noticed that all prepared samples are position dependence of the energy gaps calculated for $Co_{1-x}Ru_{x}Sb_{2}$ is shown in Table 2 with some other semiconductive in spite of changing the valence electrons, electrical properties. The band gaps are almost constant for gradually, by substituting Ru for Co, as mentioned above. $x \le 0.5$ and increase sharply for $x > 0.5$. These experimental results cannot be understood on the

Fig. 5a and b show R_H vs. $1/T$ curves. As it can be seen, R_H at 77 K is positive (p) for $x=0$, 0.4, 0.5 and negative (n) for other compositions; the absolute value of R_H decreases for $0 \le x \le 0.4$ and increases for $0.5 \le x \le 1.0$. R_H changes its sign with increasing temperature in the examined range of measurements as follows; n for $x=0$; $n \rightarrow p$ for $x=0.1$, 0.2; n for $x=0.3$; $p \rightarrow n$ for $x=0.4$, 0.5; n for $x=0.6, 0.7, 0.8, 0.9;$ p→n for $x=1.0$. It can be noted that n-type conduction for $0.6 \le x \le 0.9$ is due to excess electrons by substituting Co for Ru in $RuSb_2$. Moreover, it can be seen that the value of log $|R_H|$ for $x=0.1, 0.2, 0.4$ increases linearly with 1/*T* in the high temperature range. The value of the mobility (μ) at 80 K was calculated by using the relation $\mu = |R_H|/\rho$. We obtained $\mu = 70 \text{ cm}^2/\text{V s}$

distortion from the orthorhombic marcasite structure de-
creases gradually and disappears at about $x=0.14$. The obtained at 80 K is shown in Table 2. The value of μ for M-M distance ($\equiv c$) decreases about 6% and M-R dis-
0.2 \le x \le 0.2 \le x \le 0.3 \text{ is very small (\sim 10⁻² cm²/V s) compared with

 $Co_{1-x}Ru_xSb_2$ ($0 \le x \le 1$) samples as a function of tempera-
ture. All log $\rho-1/T$ curves show semiconductive tempera-
ture. The S value for CoSb, varies from positive to ture. All log $\rho -1/T$ curves show semiconductive tempera-
ture. The *S* value for CoSb₂ varies from positive to
ture variation. In the high temperature region, log ρ negative with increasing temperature. As seen in t negative with increasing temperature. As seen in the figure, decreases steeply and linearly with $1/T$. Using $\log \rho \sim \Delta E/$ *S* for $0 \le x \le 0.6$ has a small negative value in the whole 2*kT* for intrinsic conduction, we derive a gap $\Delta E = 0.15$ temperature region. The value of *S* for $0.7 \le x \le 1.0$ varies

Fig. 6. Temperature dependence of thermoelectric power (*S*) of Fig. 7. Log ρ vs. $T^{-1/4}$ and log ρ vs. $T^{-1/2}$ curves of Co_{1-x}Ru_xSb₂ Co_{1-x}Ru_xSb₂ (0 \le x \le 1).

(0.1 \le x \le 0.9); (a) for (0.1 \le $(0.1 \le x \le 0.9)$; (a) for $(0.1 \le x \le 0.4)$ and (b) for $(0.5 \le x \le 0.9)$.

basis of the band model, used for the explanation of **References**

semiconductivity of $CoSb_2$ and $RuSb_2$.
We have examined the $T^{-1/4}$ and $T^{-1/2}$ temperature [1] R.N. Kuz'min, N.N. Zhurarlev, S.A. Losievskaya, Sov. Phys. Cryst.
dependences of log ρ . The results are shown in Fig. **b.** As shown in the figure, log ρ is proportional to $T^{-1/4}$ [2] K. Kjekshus, T. Rakke, A.F. Andersen, Acta Chem. Scand. A31 (1977) 253.

for $0.1 \le x \le 0.4$ and to $T^{-1/2}$ for $0.5 \le x \le 0.9$ in the lower [3] K. Kjek temperature region. These results correspond to a tempera-
ture dependence of ρ which can be expressed as $\rho = \rho_0$ [5] T. Siegrist, F. Hulliger, J. Solid State Chem. 63 (1986) 23. ture dependence of ρ which can be expressed as $\rho = \rho_0$ [5] T. Siegrist, F. Hulliger, J. Solid State Chem. 63 (1986) 23.
 $\exp(T_0/T)^{1/4}$ for $x \le 0.4$ and $\rho = \rho_0 \exp(T_0'/T)^{1/2}$ for $x \ge$ [6] T. Caillat, A. Bolshchevs 0.5. The temperature variations of ρ are the same as those [7] T. Caillat, J. Phys. Chem. Solids 59 (1998) 61. of the variable range hopping (VRH) conduction in the [8] P. Terzieff, H. Schicketanz, J. Alloys Comp. 232 (1996) 26. impurity conduction range of semiconductors [16,17]. The [9] F. Hulliger, E. Mooser, J. Phys. Chem. Solids 26 (1965) 429.

relation of $\log \rho \propto T^{-1/4}$ was given by Mott [15] and that [10] G. Brostigen, A. Kjekshus, Acta C crease of the localization length of impurity states. The [13] T. Harada, J. Phys. Soc. Jpn. 67 (1998) 1352. values of T_0 and T'_0 obtained for the present system are [14] H. Holseth, A. Kjekshus, Acta Chem. Scand. 22 (1968) 3284.
greater by an order of hundreds than those of VRH in [15] N.F. Mott, Metal-Insulator Transition values of T_0 and T'_0 are ascribed to strong localization of [17] N.F. Mott, J. Non-Cryst. Solids 1 (1968) 1.
d-states in $\text{Co}_{1-x}\text{Ru}_x\text{Sb}_2$. [18] A.L. Efros, B.I. Shklovskii, J. Phys. C 8 (19

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- [18] A.L. Efros, B.I. Shklovskii, J. Phys. C 8 (1975) L49.